Ensemble-Based Sensitivity Analysis

نویسندگان

  • RYAN D. TORN
  • GREGORY J. HAKIM
چکیده

The sensitivity of forecasts to observations is evaluated using an ensemble approach with data drawn from a pseudo-operational ensemble Kalman filter. For Gaussian statistics and a forecast metric defined as a scalar function of the forecast variables, the effect of observations on the forecast metric is quantified by changes in the metric mean and variance. For a single observation, expressions for these changes involve a product of scalar quantities, which can be rapidly evaluated for large numbers of observations. This technique is applied to determining climatological forecast sensitivity and predicting the impact of observations on sea level pressure and precipitation forecast metrics. The climatological 24-h forecast sensitivity of the average pressure over western Washington State shows a region of maximum sensitivity to the west of the region, which tilts gently westward with height. The accuracy of ensemble sensitivity predictions is tested by withholding a single buoy pressure observation from this region and comparing this perturbed forecast with the control case where the buoy is assimilated. For 30 cases, there is excellent agreement between these forecast differences and the ensemble predictions, as measured by the forecast metric. This agreement decreases for increasing numbers of observations. Nevertheless, by using statistical confidence tests to address sampling error, the impact of thousands of observations on forecast-metric variance is shown to be well estimated by a subset of the O(100) most significant observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Comparing Adjoint and Ensemble Sensitivity Analysis with Applications to Observation Targeting

The sensitivity of numerical weather forecasts to small changes in initial conditions is estimated using ensemble samples of analysis and forecast errors. Ensemble sensitivity is defined here by linear regression of analysis errors onto a given forecast metric. We show that ensemble sensitivity is proportional to the projection of the analysis-error covariance onto the adjoint sensitivity field...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Initial Condition Sensitivity of Western-Pacific Extratropical Transitions determined using Ensemble-based Sensitivity Analysis

An ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) model is used to generate ensemble analyses and forecasts for the extratropical transition (ET) events associated with Typhoons Tokage (2004) and Nabi (2005). Ensemble sensitivity analysis is then used to evaluate the relationship between forecast errors and initial condition errors at the onset of transition, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008